https://github.com/RICE-EIC/SuperTickets.
Neural architecture search (NAS) has demonstrated amazing success in searching for efficient deep neural networks (DNNs) from a given supernet. In parallel, the lottery ticket hypothesis has shown that DNNs contain small subnetworks that can be trained from scratch to achieve a comparable or higher accuracy than original DNNs. As such, it is currently a common practice to develop efficient DNNs via a pipeline of first search and then prune. Nevertheless, doing so often requires a search-train-prune-retrain process and thus prohibitive computational cost. In this paper, we discover for the first time that both efficient DNNs and their lottery subnetworks (i.e., lottery tickets) can be directly identified from a supernet, which we term as SuperTickets, via a two-in-one training scheme with jointly architecture searching and parameter pruning. Moreover, we develop a progressive and unified SuperTickets identification strategy that allows the connectivity of subnetworks to change during supernet training, achieving better accuracy and efficiency trade-offs than conventional sparse training. Finally, we evaluate whether such identified SuperTickets drawn from one task can transfer well to other tasks, validating their potential of handling multiple tasks simultaneously. Extensive experiments and ablation studies on three tasks and four benchmark datasets validate that our proposed SuperTickets achieve boosted accuracy and efficiency trade-offs than both typical NAS and pruning pipelines, regardless of having retraining or not. Codes and pretrained models are available at