task.It leads to model collapse, lack of details and texture features after Sampling, and too long Sampling time in High Resolution (HR) image reconstruction methods. This paper proposes a Diffusion Probability model for Latent features (LDDPM) to solve these problems. Firstly, a Conditional Encoder is designed to effectively encode Low-Resolution (LR) images, thereby reducing the solution space of reconstructed images to improve the performance of reconstructed images. Then, the Normalized Flow and Multi-modal adversarial training are used to model the denoising distribution with complex Multi-modal distribution so that the Generative Modeling ability of the model can be improved with a small number of Sampling steps. Experimental results on mainstream datasets demonstrate that our proposed model reconstructs more realistic HR images and obtains better PSNR and SSIM performance compared to existing SISR tasks, thus providing a new idea for SISR tasks.
In recent years, Deep Learning has shown good results in the Single Image Superresolution Reconstruction (SISR) task, thus becoming the most widely used methods in this field. The SISR task is a typical task to solve an uncertainty problem. Therefore, it is often challenging to meet the requirements of High-quality sampling, fast Sampling, and diversity of details and texture after Sampling simultaneously in a SISR