Ainu is an unwritten language that has been spoken by Ainu people who are one of the ethnic groups in Japan. It is recognized as critically endangered by UNESCO and archiving and documentation of its language heritage is of paramount importance. Although a considerable amount of voice recordings of Ainu folklore has been produced and accumulated to save their culture, only a quite limited parts of them are transcribed so far. Thus, we started a project of automatic speech recognition (ASR) for the Ainu language in order to contribute to the development of annotated language archives. In this paper, we report speech corpus development and the structure and performance of end-to-end ASR for Ainu. We investigated four modeling units (phone, syllable, word piece, and word) and found that the syllable-based model performed best in terms of both word and phone recognition accuracy, which were about 60% and over 85% respectively in speaker-open condition. Furthermore, word and phone accuracy of 80% and 90% has been achieved in a speaker-closed setting. We also found out that a multilingual ASR training with additional speech corpora of English and Japanese further improves the speaker-open test accuracy.