https://github.com/Ephemeral182/SnowFormer}.
Single image desnowing is a common yet challenging task. The complex snow degradations and diverse degradation scales demand strong representation ability. In order for the desnowing network to see various snow degradations and model the context interaction of local details and global information, we propose a powerful architecture dubbed as SnowFormer. First, it performs Scale-aware Feature Aggregation in the encoder to capture rich snow information of various degradations. Second, in order to tackle with large-scale degradation, it uses a novel Context Interaction Transformer Block in the decoder, which conducts context interaction of local details and global information from previous scale-aware feature aggregation in global context interaction. And the introduction of local context interaction improves recovery of scene details. Third, we devise a Heterogeneous Feature Projection Head which progressively fuse features from both the encoder and decoder and project the refined feature into the clean image. Extensive experiments demonstrate that the proposed SnowFormer achieves significant improvements over other SOTA methods. Compared with SOTA single image desnowing method HDCW-Net, it boosts the PSNR metric by 9.2dB on the CSD testset. Moreover, it also achieves a 5.13dB increase in PSNR compared with general image restoration architecture NAFNet, which verifies the strong representation ability of our SnowFormer for snow removal task. The code is released in \url{