Images captured in hazy weather generally suffer from quality degradation, and many dehazing methods have been developed to solve this problem. However, single image dehazing problem is still challenging due to its ill-posed nature. In this paper, we propose a depth order guided single image dehazing method, which utilizes depth order in hazy images to guide the dehazing process to achieve a similar depth perception in corresponding dehazing results. The consistency of depth perception ensures that the regions that look farther or closer in hazy images also appear farther or closer in the corresponding dehazing results, and thus effectively avoid the undesired visual effects. To achieve this goal, a simple yet effective strategy is proposed to extract the depth order in hazy images, which offers a reference for depth perception in hazy weather. Additionally, a depth order embedded transformation model is devised, which performs transmission estimation under the guidance of depth order to realize an unchanged depth order in the dehazing results. The extracted depth order provides a powerful global constraint for the dehazing process, which contributes to the efficient utilization of global information, thereby bringing an overall improvement in restoration quality. Extensive experiments demonstrate that the proposed method can better recover potential structure and vivid color with higher computational efficiency than the state-of-the-art dehazing methods.