In this paper, we aim to design a quantitative similarity function between two neural architectures. Specifically, we define a model similarity using input gradient transferability. We generate adversarial samples of two networks and measure the average accuracy of the networks on adversarial samples of each other. If two networks are highly correlated, then the attack transferability will be high, resulting in high similarity. Using the similarity score, we investigate two topics: (1) Which network component contributes to the model diversity? (2) How does model diversity affect practical scenarios? We answer the first question by providing feature importance analysis and clustering analysis. The second question is validated by two different scenarios: model ensemble and knowledge distillation. Our findings show that model diversity takes a key role when interacting with different neural architectures. For example, we found that more diversity leads to better ensemble performance. We also observe that the relationship between teacher and student networks and distillation performance depends on the choice of the base architecture of the teacher and student networks. We expect our analysis tool helps a high-level understanding of differences between various neural architectures as well as practical guidance when using multiple architectures.