We introduce SHARE: a System for Hierarchical Assistive Recipe Editing to assist home cooks with dietary restrictions -- a population under-served by existing cooking resources. Our hierarchical recipe editor makes necessary substitutions to a recipe's ingredients list and re-writes the directions to make use of the new ingredients. We introduce the novel RecipePairs dataset of 84K pairs of similar recipes in which one recipe satisfies one of seven dietary constraints, allowing for supervised training of such recipe editing models. Experiments on this dataset demonstrate that our system produces convincing, coherent recipes that are appropriate for a target dietary constraint (contain no prohibited ingredients). We show that this is a challenging task that cannot be adequately solved with human-written ingredient substitution rules or straightforward adaptation of state-of-the-art models for recipe generation. We further demonstrate through human evaluations and real-world cooking trials that recipes edited by our system can be easily followed by home cooks to create delicious and satisfactory dishes.