We address the problem of generating a sequence of LEGO brick assembly with high-fidelity structures, satisfying physical constraints between bricks. The assembly problem is challenging since the number of possible structures increases exponentially with the number of available bricks, complicating the physical constraints to satisfy across bricks. To tackle this problem, our method performs a brick structure assessment to predict the next brick position and its confidence by employing a U-shaped sparse 3D convolutional network. The convolution filter efficiently validates physical constraints in a parallelizable and scalable manner, allowing to process of different brick types. To generate a novel structure, we devise a sampling strategy to determine the next brick position by considering attachable positions under physical constraints. Instead of using handcrafted brick assembly datasets, our model is trained with a large number of 3D objects that allow to create a new high-fidelity structure. We demonstrate that our method successfully generates diverse brick structures while handling two different brick types and outperforms existing methods based on Bayesian optimization, graph generative model, and reinforcement learning, all of which are limited to a single brick type.