Model hallucination has been a crucial interest of research in Natural Language Generation (NLG). In this work, we propose sequence-level certainty as a common theme over hallucination in NLG, and explore the correlation between sequence-level certainty and the level of hallucination in model responses. We categorize sequence-level certainty into two aspects: probabilistic certainty and semantic certainty, and reveal through experiments on Knowledge-Grounded Dialogue Generation (KGDG) task that both a higher level of probabilistic certainty and a higher level of semantic certainty in model responses are significantly correlated with a lower level of hallucination. What's more, we provide theoretical proof and analysis to show that semantic certainty is a good estimator of probabilistic certainty, and therefore has the potential as an alternative to probability-based certainty estimation in black-box scenarios. Based on the observation on the relationship between certainty and hallucination, we further propose Certainty-based Response Ranking (CRR), a decoding-time method for mitigating hallucination in NLG. Based on our categorization of sequence-level certainty, we propose 2 types of CRR approach: Probabilistic CRR (P-CRR) and Semantic CRR (S-CRR). P-CRR ranks individually sampled model responses using their arithmetic mean log-probability of the entire sequence. S-CRR approaches certainty estimation from meaning-space, and ranks a number of model response candidates based on their semantic certainty level, which is estimated by the entailment-based Agreement Score (AS). Through extensive experiments across 3 KGDG datasets, 3 decoding methods, and on 4 different models, we validate the effectiveness of our 2 proposed CRR methods to reduce model hallucination.