In autonomous driving, multi-modal perception models leveraging inputs from multiple sensors exhibit strong robustness in degraded environments. However, these models face challenges in efficiently and effectively transferring learned representations across different modalities and tasks. This paper presents NeRF-Supervised Masked Auto Encoder (NS-MAE), a self-supervised pre-training paradigm for transferable multi-modal representation learning. NS-MAE is designed to provide pre-trained model initializations for efficient and high-performance fine-tuning. Our approach uses masked multi-modal reconstruction in neural radiance fields (NeRF), training the model to reconstruct missing or corrupted input data across multiple modalities. Specifically, multi-modal embeddings are extracted from corrupted LiDAR point clouds and images, conditioned on specific view directions and locations. These embeddings are then rendered into projected multi-modal feature maps using neural rendering techniques. The original multi-modal signals serve as reconstruction targets for the rendered feature maps, facilitating self-supervised representation learning. Extensive experiments demonstrate the promising transferability of NS-MAE representations across diverse multi-modal and single-modal perception models. This transferability is evaluated on various 3D perception downstream tasks, such as 3D object detection and BEV map segmentation, using different amounts of fine-tuning labeled data. Our code will be released to support the community.