Partial domain adaptation (PDA) extends standard domain adaptation to a more realistic scenario where the target domain only has a subset of classes from the source domain. The key challenge of PDA is how to select the relevant samples in the shared classes for knowledge transfer. Previous PDA methods tackle this problem by re-weighting the source samples based on the prediction of classifier or discriminator, thus discarding the pixel-level information. In this paper, to utilize both high-level and pixel-level information, we propose a reinforced transfer network (RTNet), which is the first work to apply reinforcement learning to address the PDA problem. The RTNet simultaneously mitigates the negative transfer by adopting a reinforced data selector to filter out outlier source classes, and promotes the positive transfer by employing a domain adaptation model to minimize the distribution discrepancy in the shared label space. Extensive experiments indicate that RTNet can achieve state-of-the-art performance for partial domain adaptation tasks on several benchmark datasets. Codes and datasets will be available online.