Multimodal Emotion Recognition in Conversations (MERC) aims to classify utterance emotions using textual, auditory, and visual modal features. Most existing MERC methods assume each utterance has complete modalities, overlooking the common issue of incomplete modalities in real-world scenarios. Recently, graph neural networks (GNNs) have achieved notable results in Incomplete Multimodal Emotion Recognition in Conversations (IMERC). However, traditional GNNs focus on binary relationships between nodes, limiting their ability to capture more complex, higher-order information. Moreover, repeated message passing can cause over-smoothing, reducing their capacity to preserve essential high-frequency details. To address these issues, we propose a Spectral Domain Reconstruction Graph Neural Network (SDR-GNN) for incomplete multimodal learning in conversational emotion recognition. SDR-GNN constructs an utterance semantic interaction graph using a sliding window based on both speaker and context relationships to model emotional dependencies. To capture higher-order and high-frequency information, SDR-GNN utilizes weighted relationship aggregation, ensuring consistent semantic feature extraction across utterances. Additionally, it performs multi-frequency aggregation in the spectral domain, enabling efficient recovery of incomplete modalities by extracting both high- and low-frequency information. Finally, multi-head attention is applied to fuse and optimize features for emotion recognition. Extensive experiments on various real-world datasets demonstrate that our approach is effective in incomplete multimodal learning and outperforms current state-of-the-art methods.