This paper gives a practical tutorial on popular causal structure learning models with examples of real-world data to help healthcare audiences understand and apply them. We review prominent traditional, score-based and machine-learning based schemes for causal structure discovery, study some of their performance over some benchmark datasets, and discuss some of the applications to biomedicine. In the case of sufficient data, machine learning-based approaches can be scalable, can include a greater number of variables than traditional approaches, and can potentially be applied in many biomedical applications.