Few-shot relation reasoning on knowledge graphs (FS-KGR) aims to infer long-tail data-poor relations, which has drawn increasing attention these years due to its practicalities. The pre-training of previous methods needs to manually construct the meta-relation set, leading to numerous labor costs. Self-supervised learning (SSL) is treated as a solution to tackle the issue, but still at an early stage for FS-KGR task. Moreover, most of the existing methods ignore leveraging the beneficial information from aliasing relations (AR), i.e., data-rich relations with similar contextual semantics to the target data-poor relation. Therefore, we proposed a novel Self-Supervised Learning model by leveraging Aliasing Relations to assist FS-KGR, termed SARF. Concretely, four main components are designed in our model, i.e., SSL reasoning module, AR-assisted mechanism, fusion module, and scoring function. We first generate the representation of the co-occurrence patterns in a generative manner. Meanwhile, the representations of aliasing relations are learned to enhance reasoning in the AR-assist mechanism. Besides, multiple strategies, i.e., simple summation and learnable fusion, are offered for representation fusion. Finally, the generated representation is used for scoring. Extensive experiments on three few-shot benchmarks demonstrate that SARF achieves state-of-the-art performance compared with other methods in most cases.