https://github.com/bingogome/samm). SAMM achieves 0.6-second latency of a complete cycle and can infer image masks in nearly real-time.
The Segment Anything Model (SAM) is a new image segmentation tool trained with the largest segmentation dataset at this time. The model has demonstrated that it can create high-quality masks for image segmentation with good promptability and generalizability. However, the performance of the model on medical images requires further validation. To assist with the development, assessment, and utilization of SAM on medical images, we introduce Segment Any Medical Model (SAMM), an extension of SAM on 3D Slicer, a widely-used open-source image processing and visualization software that has been extensively used in the medical imaging community. This open-source extension to 3D Slicer and its demonstrations are posted on GitHub (