The identification and discovery of drug-target Interaction (DTI) is an important step in the field of Drug research and development, which can help scientists discover new drugs and accelerate the development process. KnowledgeGraph and the related knowledge graph Embedding (KGE) model develop rapidly and show good performance in the field of drug discovery in recent years. In the task of drug target identification, the lack of authenticity and accuracy of the model will lead to the increase of misjudgment rate and the low efficiency of drug development. To solve the above problems, this study focused on the problem of drug target link prediction with knowledge mapping as the core technology, and adopted the confidence measurement method based on causal intervention to measure the triplet score, so as to improve the accuracy of drug target interaction prediction model. By comparing with the traditional Softmax and Sigmod confidence measurement methods on different KGE models, the results show that the confidence measurement method based on causal intervention can effectively improve the accuracy of DTI link prediction, especially for high-precision models. The predicted results are more conducive to guiding the design and development of followup experiments of drug development, so as to improve the efficiency of drug development.