This study presents a novel methodology utilizing a pre-trained speech recognition model for processing respiratory sound data. By incorporating medical record information, we introduce an innovative multi-modal deep-learning architecture, named Rene, which addresses the challenges of poor interpretability and underperformance in real-time clinical diagnostic response observed in previous respiratory disease-focused models. The proposed Rene architecture demonstrated significant improvements of 10.24%, 16.15%, 15.29%, and 18.90% respectively, compared to the baseline across four tasks related to respiratory event detection and audio record classification on the SPRSound database. In patient disease prediction tests on the ICBHI database, the architecture exhibited improvements of 23% in the mean of average score and harmonic score compared to the baseline. Furthermore, we developed a real-time respiratory sound discrimination system based on the Rene architecture, featuring a dual-thread design and compressed model parameters for simultaneous microphone recording and real-time dynamic decoding. Employing state-of-the-art Edge AI technology, this system enables rapid and accurate responses for respiratory sound auscultation, facilitating deployment on wearable clinical detection devices to capture incremental data, which can be synergistically evolved with large-scale models deployed on cloud servers for downstream tasks.