Heterogeneous graph learning has drawn significant attentions in recent years, due to the success of graph neural networks (GNNs) and the broad applications of heterogeneous information networks. Various heterogeneous graph neural networks have been proposed to generalize GNNs for processing the heterogeneous graphs. Unfortunately, these approaches model the heterogeneity via various complicated modules. This paper aims to propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs. Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections. To optimize these relation embeddings and the other parameters simultaneously, a gradient scaling factor is proposed to constrain the embeddings to converge to suitable values. Besides, we theoretically demonstrate that our RE-GNNs have more expressive power than the meta-path based heterogeneous GNNs. Extensive experiments on the node classification tasks validate the effectiveness of our proposed method.