Best-of-N (BoN) sampling with a reward model has been shown to be an effective strategy for aligning Large Language Models (LLMs) to human preferences at the time of decoding. BoN sampling is susceptible to a problem known as reward hacking. Because the reward model is an imperfect proxy for the true objective, over-optimizing its value can compromise its performance on the true objective. A common solution to prevent reward hacking in preference learning techniques is to optimize a reward using proximity regularization (e.g., KL regularization), which ensures that the language model remains close to the reference model. In this research, we propose Regularized Best-of-N (RBoN), a variant of BoN that aims to mitigate reward hacking by incorporating a proximity term in response selection, similar to preference learning techniques. We evaluate two variants of RBoN on the AlpacaFarm dataset and find that they outperform BoN, especially when the proxy reward model has a low correlation with the true objective.