Machine learning is evolving towards high-order models that necessitate pre-training on extensive datasets, a process associated with significant overheads. Traditional models, despite having pre-trained weights, are becoming obsolete due to architectural differences that obstruct the effective transfer and initialization of these weights. To address these challenges, we introduce a novel framework, QuadraNet V2, which leverages quadratic neural networks to create efficient and sustainable high-order learning models. Our method initializes the primary term of the quadratic neuron using a standard neural network, while the quadratic term is employed to adaptively enhance the learning of data non-linearity or shifts. This integration of pre-trained primary terms with quadratic terms, which possess advanced modeling capabilities, significantly augments the information characterization capacity of the high-order network. By utilizing existing pre-trained weights, QuadraNet V2 reduces the required GPU hours for training by 90\% to 98.4\% compared to training from scratch, demonstrating both efficiency and effectiveness.