Accurate and consistent construction of point clouds from LiDAR scanning data is fundamental for 3D modeling applications. Current solutions, such as multiview point cloud registration and LiDAR bundle adjustment, predominantly depend on the local plane assumption, which may be inadequate in complex environments lacking of planar geometries or substantial initial pose errors. To mitigate this problem, this paper presents a LiDAR bundle adjustment with progressive spatial smoothing, which is suitable for complex environments and exhibits improved convergence capabilities. The proposed method consists of a spatial smoothing module and a pose adjustment module, which combines the benefits of local consistency and global accuracy. With the spatial smoothing module, we can obtain robust and rich surface constraints employing smoothing kernels across various scales. Then the pose adjustment module corrects all poses utilizing the novel surface constraints. Ultimately, the proposed method simultaneously achieves fine poses and parametric surfaces that can be directly employed for high-quality point cloud reconstruction. The effectiveness and robustness of our proposed approach have been validated on both simulation and real-world datasets. The experimental results demonstrate that the proposed method outperforms the existing methods and achieves better accuracy in complex environments with low planar structures.