https://github.com/GabyUSTC/IPG-Rec.
Recommender systems mainly tailor personalized recommendations according to user interests learned from user feedback. However, such recommender systems passively cater to user interests and even reinforce existing interests in the feedback loop, leading to problems like filter bubbles and opinion polarization. To counteract this, proactive recommendation actively steers users towards developing new interests in a target item or topic by strategically modulating recommendation sequences. Existing work for proactive recommendation faces significant hurdles: 1) overlooking the user feedback in the guidance process; 2) lacking explicit modeling of the guiding objective; and 3) insufficient flexibility for integration into existing industrial recommender systems. To address these issues, we introduce an Iterative Preference Guidance (IPG) framework. IPG performs proactive recommendation in a flexible post-processing manner by ranking items according to their IPG scores that consider both interaction probability and guiding value. These scores are explicitly estimated with iteratively updated user representation that considers the most recent user interactions. Extensive experiments validate that IPG can effectively guide user interests toward target interests with a reasonable trade-off in recommender accuracy. The code is available at