Learning utility, or reward, models from pairwise comparisons is a fundamental component in a number of application domains. These approaches inherently entail collecting preference information from people, with feedback often provided anonymously. Since preferences are subjective, there is no gold standard to compare against; yet, reliance of high-impact systems on preference learning creates a strong motivation for malicious actors to skew data collected in this fashion to their ends. We investigate the nature and extent of this vulnerability systematically by considering a threat model in which an attacker can flip a small subset of preference comparisons with the goal of either promoting or demoting a target outcome. First, we propose two classes of algorithmic approaches for these attacks: a principled gradient-based framework, and several variants of rank-by-distance methods. Next, we demonstrate the efficacy of best attacks in both these classes in successfully achieving malicious goals on datasets from three diverse domains: autonomous control, recommendation system, and textual prompt-response preference learning. We find that the best attacks are often highly successful, achieving in the most extreme case 100% success rate with only 0.3% of the data poisoned. However, which attack is best can vary significantly across domains, demonstrating the value of our comprehensive vulnerability analysis that involves several classes of attack algorithms. In addition, we observe that the simpler and more scalable rank-by-distance approaches are often competitive with the best, and on occasion significantly outperform gradient-based methods. Finally, we show that several state-of-the-art defenses against other classes of poisoning attacks exhibit, at best, limited efficacy in our setting.