Relational database management systems (RDBMS) are widely used for the storage and retrieval of structured data. To derive insights beyond statistical aggregation, we typically have to extract specific subdatasets from the database using conventional database operations, and then apply deep neural networks (DNN) training and inference on these respective subdatasets in a separate machine learning system. The process can be prohibitively expensive, especially when there are a combinatorial number of subdatasets extracted for different analytical purposes. This calls for efficient in-database support of advanced analytical methods In this paper, we introduce LEADS, a novel SQL-aware dynamic model slicing technique to customize models for subdatasets specified by SQL queries. LEADS improves the predictive modeling of structured data via the mixture of experts (MoE) technique and maintains inference efficiency by a SQL-aware gating network. At the core of LEADS is the construction of a general model with multiple expert sub-models via MoE trained over the entire database. This SQL-aware MoE technique scales up the modeling capacity, enhances effectiveness, and preserves efficiency by activating only necessary experts via the gating network during inference. Additionally, we introduce two regularization terms during the training process of LEADS to strike a balance between effectiveness and efficiency. We also design and build an in-database inference system, called INDICES, to support end-to-end advanced structured data analytics by non-intrusively incorporating LEADS onto PostgreSQL. Our extensive experiments on real-world datasets demonstrate that LEADS consistently outperforms baseline models, and INDICES delivers effective in-database analytics with a considerable reduction in inference latency compared to traditional solutions.