Most human action recognition systems typically consider static appearances and motion as independent streams of information. In this paper, we consider the evolution of human pose and propose a method to better capture interdependence among skeleton joints. Our model extracts motion information from each joint independently, reweighs the information and finally performs inter-joint reasoning. The effectiveness of pose and joint-based representations is strengthened using a geometry-aware data augmentation technique which jitters pose heatmaps while retaining the dynamics of the action. Our best model gives an absolute improvement of 8.19% on JHMDB, 4.31% on HMDB and 1.55 mAP on Charades datasets over state-of-the-art methods using pose heat-maps alone. Fusing with RGB and flow streams leads to improvement over state-of-the-art. Our model also outperforms the baseline on Mimetics, a dataset with out-of-context videos by 1.14% while using only pose heatmaps. Further, to filter out clips irrelevant for action recognition, we re-purpose our model for clip selection guided by pose information and show improved performance using fewer clips.