To align advanced artificial intelligence (AI) with human values and promote safe AI, it is important for AI to predict the outcome of physical interactions. Even with the ongoing debates on how humans predict the outcomes of physical interactions among objects in the real world, there are works attempting to tackle this task via cognitive-inspired AI approaches. However, there is still a lack of AI approaches that mimic the mental imagery humans use to predict physical interactions in the real world. In this work, we propose a novel PIP scheme: Physical Interaction Prediction via Mental Imagery with Span Selection. PIP utilizes a deep generative model to output future frames of physical interactions among objects before extracting crucial information for predicting physical interactions by focusing on salient frames using span selection. To evaluate our model, we propose a large-scale SPACE+ dataset of synthetic video frames, including three physical interaction events in a 3D environment. Our experiments show that PIP outperforms baselines and human performance in physical interaction prediction for both seen and unseen objects. Furthermore, PIP's span selection scheme can effectively identify the frames where physical interactions among objects occur within the generated frames, allowing for added interpretability.