Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!
Abstract:Large Vision-Language Models (LVLMs) have demonstrated their powerful multimodal capabilities. However, they also face serious safety problems, as adversaries can induce robustness issues in LVLMs through the use of well-designed adversarial examples. Therefore, LVLMs are in urgent need of detection tools for adversarial examples to prevent incorrect responses. In this work, we first discover that LVLMs exhibit regular attention patterns for clean images when presented with probe questions. We propose an unconventional method named PIP, which utilizes the attention patterns of one randomly selected irrelevant probe question (e.g., "Is there a clock?") to distinguish adversarial examples from clean examples. Regardless of the image to be tested and its corresponding question, PIP only needs to perform one additional inference of the image to be tested and the probe question, and then achieves successful detection of adversarial examples. Even under black-box attacks and open dataset scenarios, our PIP, coupled with a simple SVM, still achieves more than 98% recall and a precision of over 90%. Our PIP is the first attempt to detect adversarial attacks on LVLMs via simple irrelevant probe questions, shedding light on deeper understanding and introspection within LVLMs. The code is available at https://github.com/btzyd/pip.
* Accepted by ACM Multimedia 2024 BNI track (Oral)