Periocular biometric, or peripheral area of ocular, is a collaborative alternative to face, especially if a face is occluded or masked. In practice, sole periocular biometric captures least salient facial features, thereby suffering from intra-class compactness and inter-class dispersion issues particularly in the wild environment. To address these problems, we transfer useful information from face to support periocular modality by means of knowledge distillation (KD) for embedding learning. However, applying typical KD techniques to heterogeneous modalities directly is suboptimal. We put forward in this paper a deep face-to-periocular distillation networks, coined as cross-modal consistent knowledge distillation (CM-CKD) henceforward. The three key ingredients of CM-CKD are (1) shared-weight networks, (2) consistent batch normalization, and (3) a bidirectional consistency distillation for face and periocular through an effectual CKD loss. To be more specific, we leverage face modality for periocular embedding learning, but only periocular images are targeted for identification or verification tasks. Extensive experiments on six constrained and unconstrained periocular datasets disclose that the CM-CKD-learned periocular embeddings extend identification and verification performance by 50% in terms of relative performance gain computed based upon face and periocular baselines. The experiments also reveal that the CM-CKD-learned periocular features enjoy better subject-wise cluster separation, thereby refining the overall accuracy performance.