https://github.com/BambValley/P2U-SLAM.
This paper presents P2U-SLAM, a visual Simultaneous Localization And Mapping (SLAM) system with a wide Field of View (FoV) camera, which utilizes pose uncertainty and point uncertainty. While the wide FoV enables considerable repetitive observations of historical map points for matching cross-view features, the data properties of the historical map points and the poses of historical keyframes have changed during the optimization process. The neglect of data property changes triggers the absence of a partial information matrix in optimization and leads to the risk of long-term positioning performance degradation. The purpose of our research is to reduce the risk of the wide field of view visual input to the SLAM system. Based on the conditional probability model, this work reveals the definite impact of the above data properties changes on the optimization process, concretizes it as point uncertainty and pose uncertainty, and gives a specific mathematical form. P2U-SLAM respectively embeds point uncertainty and pose uncertainty into the tracking module and local mapping, and updates these uncertainties after each optimization operation including local mapping, map merging, and loop closing. We present an exhaustive evaluation in 27 sequences from two popular public datasets with wide-FoV visual input. P2U-SLAM shows excellent performance compared with other state-of-the-art methods. The source code will be made publicly available at