Motivated by recent developments in serverless systems for large-scale machine learning as well as improvements in scalable randomized matrix algorithms, we develop OverSketched Newton, a randomized Hessian-based optimization algorithm to solve large-scale smooth and strongly-convex problems in serverless systems. OverSketched Newton leverages matrix sketching ideas from Randomized Numerical Linear Algebra to compute the Hessian approximately. These sketching methods lead to inbuilt resiliency against stragglers that are a characteristic of serverless architectures. We establish that OverSketched Newton has a linear-quadratic convergence rate, and we empirically validate our results by solving large-scale supervised learning problems on real-world datasets. Experiments demonstrate a reduction of ~50% in total running time on AWS Lambda, compared to state-of-the-art distributed optimization schemes.