This work employs a pre-trained, multi-view Convolutional Neural Network (CNN) with a spatial attention block to optimise knee injury detection. An open-source Magnetic Resonance Imaging (MRI) data set with image-level labels was leveraged for this analysis. As MRI data is acquired from three planes, we compare our technique using data from a single-plane and multiple planes (multi-plane). For multi-plane, we investigate various methods of fusing the planes in the network. This analysis resulted in the novel 'MPFuseNet' network and state-of-the-art Area Under the Curve (AUC) scores for detecting Anterior Cruciate Ligament (ACL) tears and Abnormal MRIs, achieving AUC scores of 0.977 and 0.957 respectively. We then developed an objective metric, Penalised Localisation Accuracy (PLA), to validate the model's localisation ability. This metric compares binary masks generated from Grad-Cam output and the radiologist's annotations on a sample of MRIs. We also extracted explainability features in a model-agnostic approach that were then verified as clinically relevant by the radiologist.