We analyze the optimization landscape of a recently introduced tunable class of loss functions called $\alpha$-loss, $\alpha \in (0,\infty]$, in the logistic model. This family encapsulates the exponential loss ($\alpha = 1/2$), the log-loss ($\alpha = 1$), and the 0-1 loss ($\alpha = \infty$) and contains compelling properties that enable the practitioner to discern among a host of operating conditions relevant to emerging learning methods. Specifically, we study the evolution of the optimization landscape of $\alpha$-loss with respect to $\alpha$ using tools drawn from the study of strictly-locally-quasi-convex functions in addition to geometric techniques. We interpret these results in terms of optimization complexity via normalized gradient descent.