The out-of-distribution (OOD) problem generally arises when neural networks encounter data that significantly deviates from the training data distribution, \ie, in-distribution (InD). In this paper, we study the OOD problem from a neuron activation view. We first formulate neuron activation states by considering both the neuron output and its influence on model decisions. Then, we propose the concept of \textit{neuron activation coverage} (NAC), which characterizes the neuron behaviors under InD and OOD data. Leveraging our NAC, we show that 1) InD and OOD inputs can be naturally separated based on the neuron behavior, which significantly eases the OOD detection problem and achieves a record-breaking performance of 0.03% FPR95 on ResNet-50, outperforming the previous best method by 20.67%; 2) a positive correlation between NAC and model generalization ability consistently holds across architectures and datasets, which enables a NAC-based criterion for evaluating model robustness. By comparison with the traditional validation criterion, we show that NAC-based criterion not only can select more robust models, but also has a stronger correlation with OOD test performance.