Neural Radiance Fields (NeRF), as a pioneering technique in computer vision, offer great potential to revolutionize medical imaging by synthesizing three-dimensional representations from the projected two-dimensional image data. However, they face unique challenges when applied to medical applications. This paper presents a comprehensive examination of applications of NeRFs in medical imaging, highlighting four imminent challenges, including fundamental imaging principles, inner structure requirement, object boundary definition, and color density significance. We discuss current methods on different organs and discuss related limitations. We also review several datasets and evaluation metrics and propose several promising directions for future research.