https://github.com/Zrrr1997/syn2real_DG
Domain shifts, such as appearance changes, are a key challenge in real-world applications of activity recognition models, which range from assistive robotics and smart homes to driver observation in intelligent vehicles. For example, while simulations are an excellent way of economical data collection, a Synthetic-to-Real domain shift leads to a > 60% drop in accuracy when recognizing activities of Daily Living (ADLs). We tackle this challenge and introduce an activity domain generation framework which creates novel ADL appearances (novel domains) from different existing activity modalities (source domains) inferred from video training data. Our framework computes human poses, heatmaps of body joints, and optical flow maps and uses them alongside the original RGB videos to learn the essence of source domains in order to generate completely new ADL domains. The model is optimized by maximizing the distance between the existing source appearances and the generated novel appearances while ensuring that the semantics of an activity is preserved through an additional classification loss. While source data multimodality is an important concept in this design, our setup does not rely on multi-sensor setups, (i.e., all source modalities are inferred from a single video only.) The newly created activity domains are then integrated in the training of the ADL classification networks, resulting in models far less susceptible to changes in data distributions. Extensive experiments on the Synthetic-to-Real benchmark Sims4Action demonstrate the potential of the domain generation paradigm for cross-domain ADL recognition, setting new state-of-the-art results. Our code is publicly available at