Recently, the low rank and sparse (LRS) matrix decomposition has been introduced as an effective mean to solve the multi-view registration. It views each available relative motion as a block element to reconstruct one matrix so as to approximate the low rank matrix, where global motions can be recovered for multi-view registration. However, this approach is sensitive to the sparsity of the reconstructed matrix and it treats all block elements equally in spite of their varied reliability. Therefore, this paper proposes an effective approach for multi-view registration by the weighted LRS decomposition. Based on the anti-symmetry property of relative motions, it firstly proposes a completion strategy to reduce the sparsity of the reconstructed matrix. The reduced sparsity of reconstructed matrix can improve the robustness of LRS decomposition. Then, it proposes the weighted LRS decomposition, where each block element is assigned with one estimated weight to denote its reliability. By introducing the weight, more accurate registration results can be recovered from the estimated low rank matrix with good efficiency. Experimental results tested on public data sets illustrate the superiority of the proposed approach over the state-of-the-art approaches on robustness, accuracy, and efficiency.