https://github.com/icandle/MAN.
By exploiting large kernel decomposition and attention mechanisms, convolutional neural networks (CNN) can compete with transformer-based methods in many high-level computer vision tasks. However, due to the advantage of long-range modeling, the transformers with self-attention still dominate the low-level vision, including the super-resolution task. In this paper, we propose a CNN-based multi-scale attention network (MAN), which consists of multi-scale large kernel attention (MLKA) and a gated spatial attention unit (GSAU), to improve the performance of convolutional SR networks. Within our MLKA, we rectify LKA with multi-scale and gate schemes to obtain the abundant attention map at various granularity levels, therefore jointly aggregating global and local information and avoiding the potential blocking artifacts. In GSAU, we integrate gate mechanism and spatial attention to remove the unnecessary linear layer and aggregate informative spatial context. To confirm the effectiveness of our designs, we evaluate MAN with multiple complexities by simply stacking different numbers of MLKA and GSAU. Experimental results illustrate that our MAN can achieve varied trade-offs between state-of-the-art performance and computations. Code is available at