The Dual-Path Convolution Recurrent Network (DPCRN) was proposed to effectively exploit time-frequency domain information. By combining the DPRNN module with Convolution Recurrent Network (CRN), the DPCRN obtained a promising performance in speech separation with a limited model size. In this paper, we explore self-attention in the DPCRN module and design a model called Multi-Loss Convolutional Network with Time-Frequency Attention(MNTFA) for speech enhancement. We use self-attention modules to exploit the long-time information, where the intra-chunk self-attentions are used to model the spectrum pattern and the inter-chunk self-attention are used to model the dependence between consecutive frames. Compared to DPRNN, axial self-attention greatly reduces the need for memory and computation, which is more suitable for long sequences of speech signals. In addition, we propose a joint training method of a multi-resolution STFT loss and a WavLM loss using a pre-trained WavLM network. Experiments show that with only 0.23M parameters, the proposed model achieves a better performance than DPCRN.