Causal variables in Markov boundary (MB) have been widely applied in extensive single-label tasks. While few researches focus on the causal variable discovery in multi-label data due to the complex causal relationships. Since some variables in multi-label scenario might contain causal information about multiple labels, this paper investigates the problem of multi-label causal variable discovery as well as the distinguishing between common causal variables shared by multiple labels and label-specific causal variables associated with some single labels. Considering the multiple MBs under the non-positive joint probability distribution, we explore the relationships between common causal variables and equivalent information phenomenon, and find that the solutions are influenced by equivalent information following different mechanisms with or without existence of label causality. Analyzing these mechanisms, we provide the theoretical property of common causal variables, based on which the discovery and distinguishing algorithm is designed to identify these two types of variables. Similar to single-label problem, causal variables for multiple labels also have extensive application prospects. To demonstrate this, we apply the proposed causal mechanism to multi-label feature selection and present an interpretable algorithm, which is proved to achieve the minimal redundancy and the maximum relevance. Extensive experiments demonstrate the efficacy of these contributions.