With the success of offline reinforcement learning (RL), offline trained RL policies have the potential to be further improved when deployed online. A smooth transfer of the policy matters in safe real-world deployment. Besides, fast adaptation of the policy plays a vital role in practical online performance improvement. To tackle these challenges, we propose a simple yet efficient algorithm, Model-based Offline-to-Online Reinforcement learning (MOORe), which employs a prioritized sampling scheme that can dynamically adjust the offline and online data for smooth and efficient online adaptation of the policy. We provide a theoretical foundation for our algorithms design. Experiment results on the D4RL benchmark show that our algorithm smoothly transfers from offline to online stages while enabling sample-efficient online adaption, and also significantly outperforms existing methods.