Influence maximization (IM) is one of the most important problems in social network analysis. Its objective is to find a given number of seed nodes who maximize the spread of information through a social network. Since it is an NP-hard problem, many approximate/heuristic methods have been developed, and a number of them repeats Monte Carlo (MC) simulations over and over, specifically tens of thousands of times or more per potential seed set, to reliably estimate the influence. In this work, we present an inductive machine learning method, called Monte Carlo Simulator (MONSTOR), to predict the results of MC simulations on networks unseen during training. MONSTOR can greatly accelerate existing IM methods by replacing repeated MC simulations. In our experiments, MONSTOR achieves near-perfect accuracy on unseen real social networks with little sacrifice of accuracy in IM use cases.