Large language models (LLMs) have shown remarkable capabilities in generating high-quality text and making predictions based on large amounts of data, including the media domain. However, in practical applications, the differences between the media's use cases and the general-purpose applications of LLMs have become increasingly apparent, especially Chinese. This paper examines the unique characteristics of media-domain-specific LLMs compared to general LLMs, designed a diverse set of task instruction types to cater the specific requirements of the domain and constructed unique datasets that are tailored to the media domain. Based on these, we proposed MediaGPT, a domain-specific LLM for the Chinese media domain, training by domain-specific data and experts SFT data. By performing human experts evaluation and strong model evaluation on a validation set, this paper demonstrated that MediaGPT outperforms mainstream models on various Chinese media domain tasks and verifies the importance of domain data and domain-defined prompt types for building an effective domain-specific LLM.