The Sinkhorn distance, a variant of the Wasserstein distance with entropic regularization, is an increasingly popular tool in machine learning and statistical inference. We give a simple, practical, parallelizable algorithm NYS-SINK, based on Nystr\"om approximation, for computing Sinkhorn distances on a massive scale. As we show in numerical experiments, our algorithm easily computes Sinkhorn distances on data sets hundreds of times larger than can be handled by state-of-the-art approaches. We also give provable guarantees establishing that the running time and memory requirements of our algorithm adapt to the intrinsic dimension of the underlying data.