Multicalibration is a notion of fairness that aims to provide accurate predictions across a large set of groups. Multicalibration is known to be a different goal than loss minimization, even for simple predictors such as linear functions. In this note, we show that for (almost all) large neural network sizes, optimally minimizing squared error leads to multicalibration. Our results are about representational aspects of neural networks, and not about algorithmic or sample complexity considerations. Previous such results were known only for predictors that were nearly Bayes-optimal and were therefore representation independent. We emphasize that our results do not apply to specific algorithms for optimizing neural networks, such as SGD, and they should not be interpreted as "fairness comes for free from optimizing neural networks".