Video compression is a central feature of the modern internet powering technologies from social media to video conferencing. While video compression continues to mature, for many, and particularly for extreme, compression settings, quality loss is still noticeable. These extreme settings nevertheless have important applications to the efficient transmission of videos over bandwidth constrained or otherwise unstable connections. In this work, we develop a deep learning architecture capable of restoring detail to compressed videos which leverages the underlying structure and motion information embedded in the video bitstream. We show that this improves restoration accuracy compared to prior compression correction methods and is competitive when compared with recent deep-learning-based video compression methods on rate-distortion while achieving higher throughput.