Face meshes in consistent topology serve as the foundation for many face-related applications, such as 3DMM constrained face reconstruction and expression retargeting. Traditional methods commonly acquire topology uniformed face meshes by two separate steps: multi-view stereo (MVS) to reconstruct shapes followed by non-rigid registration to align topology, but struggles with handling noise and non-lambertian surfaces. Recently neural volume rendering techniques have been rapidly evolved and shown great advantages in 3D reconstruction or novel view synthesis. Our goal is to leverage the superiority of neural volume rendering into multi-view reconstruction of face mesh with consistent topology. We propose a mesh volume rendering method that enables directly optimizing mesh geometry while preserving topology, and learning implicit features to model complex facial appearance from multi-view images. The key innovation lies in spreading sparse mesh features into the surrounding space to simulate radiance field required for volume rendering, which facilitates backpropagation of gradients from images to mesh geometry and implicit appearance features. Our proposed feature spreading module exhibits deformation invariance, enabling photorealistic rendering seamlessly after mesh editing. We conduct experiments on multi-view face image dataset to evaluate the reconstruction and implement an application for photorealistic rendering of animated face mesh.