Online Hate speech detection has become important with the growth of digital devices, but resources in languages other than English are extremely limited. We introduce K-MHaS, a new multi-label dataset for hate speech detection that effectively handles Korean language patterns. The dataset consists of 109k utterances from news comments and provides multi-label classification from 1 to 4 labels, and handling subjectivity and intersectionality. We evaluate strong baselines on K-MHaS. KR-BERT with sub-character tokenizer outperforms, recognising decomposed characters in each hate speech class.