A novel pinching antenna system (PASS)-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed. PASS consists of multiple waveguides spanning over thousands of wavelength, which equip numerous low-cost dielectric particles, named pinching antennas (PAs), to radiate signals into free space. The positions of PAs can be reconfigured to change both the large-scale path losses and phases of signals, thus facilitating the novel pinching beamforming design. A sum rate maximization problem is formulated, which jointly optimizes the transmit and pinching beamforming to adaptively achieve constructive signal enhancement and destructive interference mitigation. To solve this highly coupled and nonconvex problem, both optimization-based and learning-based methods are proposed. 1) For the optimization-based method, a majorization-minimization and penalty dual decomposition (MM-PDD) algorithm is developed, which handles the nonconvex complex exponential component using a Lipschitz surrogate function and then invokes PDD for problem decoupling. 2) For the learning-based method, a novel Karush-Kuhn-Tucker (KKT)-guided dual learning (KDL) approach is proposed, which enables KKT solutions to be reconstructed in a data-driven manner by learning dual variables. Following this idea, a KDL-Tranformer algorithm is developed, which captures both inter-PA/inter-user dependencies and channel-state-information (CSI)-beamforming dependencies by attention mechanisms. Simulation results demonstrate that: i) The proposed PASS framework significantly outperforms conventional massive multiple input multiple output (MIMO) system even with a few PAs. ii) The proposed KDL-Transformer can improve over 30% system performance than MM-PDD algorithm, while achieving a millisecond-level response on modern GPUs.