images.To exploit its potential power, in this paper, we generalize the decomposition mechanism from the image domain to the broader feature domain. To this end, we propose a lightweight Feature Decomposition Aggregation Network (FDAN). In particular, we design a Feature Decomposition Block (FDB), which can achieve learnable separation of feature details and contrasts.By cascading FDBs, we can build up a Hierarchical Feature Decomposition Group for powerful multi-level feature decomposition.Moreover, we collect a new benchmark dataset for joint SR-ITM, \ie, SRITM-4K, which is large-scale and provides versatile scenarios for sufficient model training and evaluation.Experimental results on two benchmark datasets demonstrate that our FDAN is efficient and outperforms previous methods on joint SR-ITM.Our code and dataset will be publicly released.
Joint Super-Resolution and Inverse Tone-Mapping (joint SR-ITM) aims to increase the resolution and dynamic range of low-resolution and standard dynamic range images.Recent methods mainly resort to image decomposition techniques with the multi-branch network architecture.However, the rigid decomposition employed by these methods largely restricts their power on diverse