Deep learning has achieved enormous success in various industrial applications. Companies do not want their valuable data to be stolen by malicious employees to train pirated models. Nor do they wish the data analyzed by the competitors after using them online. We propose a novel solution for dataset protection in this scenario by robustly and reversibly transform the images into adversarial images. We develop a reversible adversarial example generator (RAEG) that introduces slight changes to the images to fool traditional classification models. Even though malicious attacks train pirated models based on the defensed versions of the protected images, RAEG can significantly weaken the functionality of these models. Meanwhile, the reversibility of RAEG ensures the performance of authorized models. Extensive experiments demonstrate that RAEG can better protect the data with slight distortion against adversarial defense than previous methods.